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Lecture 13 - Learning



  

Outline

● What is learning
● Kinds of learning

● rote learning
● inductive learning
● reinforcement learning
● explanation-based learning
● inductive logic programming

● Choice of representation
● Evaluating learning algorithms (PAC-learning)



  

Learning

● It is often impossible (or simply inconvenient) to provide 
a system with all the knowledge or reasoning 
capabilities it needs

● Learning is the acquisition of new knowledge (or, less 
often, reasoning capabilities)

● Many different kinds of learning and things which can be 
learnt, e.g.,
● facts
● rules
● policies
● inference procedures etc.



  

What Is Learning?

● Learning can be viewed as the problem of producing a 
mapping (function) from inputs to output

● Inputs are typically a description of an object or situation

● Output may be a property (e.g., a classification such as 'edible' 
or 'creditworthy'), a relation, which action to perform next (e.g., 
a particular move in chess), the outcome of an action, or 
something more abstract, e.g., a theory etc.

● The mapping can be represented in many ways, e.g., decision 
trees, neural networks, sets of formulas in first order logic



  

Kinds of Learning

● There are many machine learning approaches 
which differ in:
● representation of the learned information – e.g., 

properties, relations, which action to perform next, 
etc.

● whether the learning is supervised (correct answers 
are given during learning) or unsupervised (no 
answers given)

● whether learning is 'knowledge free' or whether 
background information about the domain is 
assumed



  

Rote Learning

● The acquisition of new facts, rules etc. by “being 
told”, e.g., “Paris is the capital of France”, “All men 
are mortal” etc.
● used by McCarthy's (1968) 'advice taker' system, 

where the user provides new information about a 
particular domain

● The acquisition of new facts produced by the 
system itself, e.g., remembering the result of a 
computation (speedup learning)
● used in Samuels (1959) checkers program to learn the 

score associated with a given board position



  

Inductive Learning

● A form of supervised learning, where we are given the 
correct (or approximately correct) value of the function for 
particular inputs

● Each example is of the form (x, f(x)), where x is the 
input(s) and f(x) is the value of the function for x

● Given a set of examples (x, f(x)), generate a function h(x) 
which approximates f

● h is called a hypothesis
● A hypothesis should be

● consistent (i.e., should fit the data)
● generalise well (predict unseen examples correctly)



  

Example: Credit Scoring

● Imagine a credit scoring system that decides whether 
a person should be given a loan

● Input data is historical information about previous 
loan applications (applicant's age, gender, address, 
job, credit history etc.)

● The value of the function is whether the loan should 
have been approved, e.g., whether the person 
defaulted on the loan

● Aim is to learn an h that predicts, for new loan 
applications, whether the applicant should be given a 
loan



  

Simplest Hypothesis

● How to choose among multiple consistent hypotheses
● Prefer the simplest hypothesis which is consistent with 

the data
● e.g., if we can fit the data with a straight line, we 

should prefer this to a high degree polynomial which is 
also consistent with the data



  

Simplest Hypothesis

● In some cases we may 
prefer a simple hypothesis 
which does not fit the data 
perfectly to a more 
complex hypothesis which 
is consistent with the data

● e.g., a simple straight line 
may generalise better 
(predict new examples 
better) than a complex 
polynomial



  

Hypothesis Space

● The set of hypotheses we will consider is called the hypothesis space, e.g., the 
set of all polynomials of degree at least at most k

● The possibility of finding a simple, consistent hypothesis depends critically on 
the hypothesis space chosen

● A learning algorithm is realisable if the hypothesis space contains the true 
function; otherwise it is unrealisable

● e.g., trying to learn a sinusoidal function with a hypothesis space consisting of 
polynomials of finite degree is unrealisable, since they can't be represent a 
sinusoidal function accurately

● Since the true function is not known (it's what we are trying to learn), we often 
can't tell if a given learning problem is realisable



  

Decision Trees

● Decision tree learning is one of the simplest forms of inductive 
learning

● Decision trees represent boolean functions – input is an object or 
situation described by a set of properties; value is a yes/no decision

● Aim is to find a compact representation of the input examples that 
also correctly predicts on unseen cases

● Proceed by repeatedly choosing the most informative property to split 
the samples on the value

● In the credit scoring example, “having a job” might be the most 
informative property, and a test on this would form the root of the tree



  

Reinforcement Learning

● Form of unsupervised learning which uses reinforcement 
(rewards) to learn which action to perform next

● Agent is never explicitly told what the right action is

● Reward is typically associated with a sequence of actions

● Not clear which action(s) are 'responsible' for the reward, e.g., 
which moves causes the agent to win or lose a game

● May be model-based or model-free, though the later restricts the 
ability to learn in complex environments



  

Learning and (Prior) Knowledge

● Considers the problem of agents which already 
know something about the domain and are trying 
to learn more

● Learning problem is usually formulated in logical 
terms, as this makes it easier to specify partial 
information about the function to be learned

● e.g., if the aim to find a hypothesis which 
explains the classification of the examples given 
their descriptions, we have

Hypothesis  ∧ Descriptions |= Classifications



  

Explanation-Based Learning

● Extracts general rules from a single example by explaining the 
example and generalising the explanation

● “explanation” is usually a logical proof, but it can be any form of 
reasoning or problem solving

● In EBL the background knowledge is assumed to be sufficient to 
explain the hypothesis (and hence the classification):

Hypothesis  ∧ Description |= Classification

Background-Knowledge |= Hypothesis

● Nothing factually new is learned from the example instance

● Instance can be seen as guiding the process of converting first-
principles theories into useful, special-purpose knowledge



  

Inductive Logic Programming

● Finds inductive hypothesis that explain sets of 
observations using background knowledge

Background-Knowledge  ∧ Hypothesis  ∧ Descriptions |
= Classification

● Hypothesis must also be consistent with background 
knowledge – reduces the size of the hypothesis space

● Can learn relational knowledge that is not expressible 
using propositional attributes

● e.g., can generate new predicates to express 
generalisations



  

Choice of Representation

● All learning can be viewed as learning the 
representation of a function

● Choice of representation for the hypothesis, h, 
(i.e., the hypothesis space) is critical

● As with reasoning, there is a tradeoff between 
expressiveness and efficiency

● The more expressive the language (e.g., first 
order logic) the more computation and examples 
will be required to learn a compact representation



  

Evaluating Learning Algorithms

● Set of examples is split into two subsets: the training set and the test set

● Learning algorithm uses the training set to induce a hypothesis which is then 
evaluated against the test set

● Training and test sets are historical data and are typically fairly small: data are 
difficult to collect and using too many examples in the training set results in 
overfitting (poor generalisation)

● Function produced may not correctly predict all the examples in the test set

● Repeat for different sizes of training set and randomly selected of each size to 
obtain the average prediction quality of the learning algorithm as a function of 
the size of the training set (learning curve)



  

Computational Learning Theory

● How do we know that h is close to the target function f, if we don't 
know what f is?

● Assume that the training and test sets are drawn randomly from the 
same population of examples – i.e., that the future is like the past

● Any hypothesis that is consistent with a sufficiently large set of 
examples is unlikely to be wrong – probably approximately correct

● An hypothesis h is approximately correct if the probability that h is 
different from f on an example is less than a (small) constant

● With enough examples there is a high probability that all consistent 
hypotheses will be approximately correct



  

Approximately Correct Hypotheses

● The error of a hypothesis h with respect to the 
true function f is the probability that h is 
different from f on an example

error(h) = P(h(x) ≠ f(x) | x drawn from D)

where D is the distribution from which examples 
are drawn

● A hypothesis is approximately correct if error(h) 
≤ ε where ε is a small constant



  

How Many Examples are Needed?

● A hypothesis h has error at most ε with probability at least 1 – 
σ, if it is consistent with at least N examples, where N is given 
by

● σ is a small constant, and H is the set of possible hyptheses

● h is said to be probably approximately correct

● Inductive learning with no prior knowledge of the target function 
is generally very hard – similar results for neural networks



  

Other Problems ...

● Systems developed using machine learning techniques 
do not necessarily reason in the same way as people, 
e.g.:
● a decision tree may ignore what (to a human) appears to be 

“relevant” information
● inductive logic programming may invent entirely new concepts 

which do not correspond to those used by humans when 
reasoning about the problem

● May be hard for users/managers to trust output of the 
system

● Similar problems to other AI techniques (e.g., expert 
systems, belief networks etc.)



  

Example: Recommender Systems

● A recommender system is a system which suggests 
products or services based on a user's previous choices 
or choices of other, similar users

● Now widely used in online retailing: e.g., Amazon's “New/ 
Recommended for you”, “other users who bought this also 
bought” etc.; iTunes “genius” feature etc.

● Other applications include search query prediction, 
collaborative email processing etc.

● Often developed using machine learning techniques



  

Case Study: the 5lb ham ...

● Some years ago, Net Perceptions was installing its 
recommender software at a major catalog retailer

● Recommender system was tuned to produce high quality 
recommendations that were successful against historical 
sales data

● Recommendations were produced in real time to call 
centre staff while processing customer calls

● e.g., if the customer orders a pink dressing gown, the 
system might suggest fuzzy pink slippers to go with it, 
based on prior sales experience



  

Case Study: the 5lb ham ...

● The day arrives for the big test when the system is used 
“live” for the first time

● The first call comes in: the customer orders a complete two 
week diet package – all the powdered food you need to eat 
to lose 10lb in two weeks

● When the order is entered into the system, top of the list of 
recommendations is a 5lb tinned ham ...

● Developers and company representatives are stunned and 
nearly cancel the test, but the call centre agent asks the 
customer if they want a ham as part of the order

● What did the customer do?



  

Case Study: the 5lb ham ...

● Customer says “sure, that would be great!”
● Software developers get the contract with the 

catalog retailer
● But no one understands why that particular 

recommendation was produced …
● Users have to trust the system



  

Summary

● Learning is hard – at least as hard as other AI 
problems

● Knowledge free learning works for simple 
problems but fails in harder cases

● We can make learning more tractable by 
incorporating knowledge, e.g., EBL and ILP

● However this requires both knowledge 
representation and reasoning, and assumes that 
we can do, e.g., the reasoning necessary to find 
an explanation in EBL
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