

Artificial Intelligence

Lecture 13 - Learning

Outline

● What is learning
● Kinds of learning

● rote learning
● inductive learning
● reinforcement learning
● explanation-based learning
● inductive logic programming

● Choice of representation
● Evaluating learning algorithms (PAC-learning)

Learning

● It is often impossible (or simply inconvenient) to provide
a system with all the knowledge or reasoning
capabilities it needs

● Learning is the acquisition of new knowledge (or, less
often, reasoning capabilities)

● Many different kinds of learning and things which can be
learnt, e.g.,
● facts
● rules
● policies
● inference procedures etc.

What Is Learning?

● Learning can be viewed as the problem of producing a
mapping (function) from inputs to output

● Inputs are typically a description of an object or situation

● Output may be a property (e.g., a classification such as 'edible'
or 'creditworthy'), a relation, which action to perform next (e.g.,
a particular move in chess), the outcome of an action, or
something more abstract, e.g., a theory etc.

● The mapping can be represented in many ways, e.g., decision
trees, neural networks, sets of formulas in first order logic

Kinds of Learning

● There are many machine learning approaches
which differ in:
● representation of the learned information – e.g.,

properties, relations, which action to perform next,
etc.

● whether the learning is supervised (correct answers
are given during learning) or unsupervised (no
answers given)

● whether learning is 'knowledge free' or whether
background information about the domain is
assumed

Rote Learning

● The acquisition of new facts, rules etc. by “being
told”, e.g., “Paris is the capital of France”, “All men
are mortal” etc.
● used by McCarthy's (1968) 'advice taker' system,

where the user provides new information about a
particular domain

● The acquisition of new facts produced by the
system itself, e.g., remembering the result of a
computation (speedup learning)
● used in Samuels (1959) checkers program to learn the

score associated with a given board position

Inductive Learning

● A form of supervised learning, where we are given the
correct (or approximately correct) value of the function for
particular inputs

● Each example is of the form (x, f(x)), where x is the
input(s) and f(x) is the value of the function for x

● Given a set of examples (x, f(x)), generate a function h(x)
which approximates f

● h is called a hypothesis
● A hypothesis should be

● consistent (i.e., should fit the data)
● generalise well (predict unseen examples correctly)

Example: Credit Scoring

● Imagine a credit scoring system that decides whether
a person should be given a loan

● Input data is historical information about previous
loan applications (applicant's age, gender, address,
job, credit history etc.)

● The value of the function is whether the loan should
have been approved, e.g., whether the person
defaulted on the loan

● Aim is to learn an h that predicts, for new loan
applications, whether the applicant should be given a
loan

Simplest Hypothesis

● How to choose among multiple consistent hypotheses
● Prefer the simplest hypothesis which is consistent with

the data
● e.g., if we can fit the data with a straight line, we

should prefer this to a high degree polynomial which is
also consistent with the data

Simplest Hypothesis

● In some cases we may
prefer a simple hypothesis
which does not fit the data
perfectly to a more
complex hypothesis which
is consistent with the data

● e.g., a simple straight line
may generalise better
(predict new examples
better) than a complex
polynomial

Hypothesis Space

● The set of hypotheses we will consider is called the hypothesis space, e.g., the
set of all polynomials of degree at least at most k

● The possibility of finding a simple, consistent hypothesis depends critically on
the hypothesis space chosen

● A learning algorithm is realisable if the hypothesis space contains the true
function; otherwise it is unrealisable

● e.g., trying to learn a sinusoidal function with a hypothesis space consisting of
polynomials of finite degree is unrealisable, since they can't be represent a
sinusoidal function accurately

● Since the true function is not known (it's what we are trying to learn), we often
can't tell if a given learning problem is realisable

Decision Trees

● Decision tree learning is one of the simplest forms of inductive
learning

● Decision trees represent boolean functions – input is an object or
situation described by a set of properties; value is a yes/no decision

● Aim is to find a compact representation of the input examples that
also correctly predicts on unseen cases

● Proceed by repeatedly choosing the most informative property to split
the samples on the value

● In the credit scoring example, “having a job” might be the most
informative property, and a test on this would form the root of the tree

Reinforcement Learning

● Form of unsupervised learning which uses reinforcement
(rewards) to learn which action to perform next

● Agent is never explicitly told what the right action is

● Reward is typically associated with a sequence of actions

● Not clear which action(s) are 'responsible' for the reward, e.g.,
which moves causes the agent to win or lose a game

● May be model-based or model-free, though the later restricts the
ability to learn in complex environments

Learning and (Prior) Knowledge

● Considers the problem of agents which already
know something about the domain and are trying
to learn more

● Learning problem is usually formulated in logical
terms, as this makes it easier to specify partial
information about the function to be learned

● e.g., if the aim to find a hypothesis which
explains the classification of the examples given
their descriptions, we have

Hypothesis ∧ Descriptions |= Classifications

Explanation-Based Learning

● Extracts general rules from a single example by explaining the
example and generalising the explanation

● “explanation” is usually a logical proof, but it can be any form of
reasoning or problem solving

● In EBL the background knowledge is assumed to be sufficient to
explain the hypothesis (and hence the classification):

Hypothesis ∧ Description |= Classification

Background-Knowledge |= Hypothesis

● Nothing factually new is learned from the example instance

● Instance can be seen as guiding the process of converting first-
principles theories into useful, special-purpose knowledge

Inductive Logic Programming

● Finds inductive hypothesis that explain sets of
observations using background knowledge

Background-Knowledge ∧ Hypothesis ∧ Descriptions |
= Classification

● Hypothesis must also be consistent with background
knowledge – reduces the size of the hypothesis space

● Can learn relational knowledge that is not expressible
using propositional attributes

● e.g., can generate new predicates to express
generalisations

Choice of Representation

● All learning can be viewed as learning the
representation of a function

● Choice of representation for the hypothesis, h,
(i.e., the hypothesis space) is critical

● As with reasoning, there is a tradeoff between
expressiveness and efficiency

● The more expressive the language (e.g., first
order logic) the more computation and examples
will be required to learn a compact representation

Evaluating Learning Algorithms

● Set of examples is split into two subsets: the training set and the test set

● Learning algorithm uses the training set to induce a hypothesis which is then
evaluated against the test set

● Training and test sets are historical data and are typically fairly small: data are
difficult to collect and using too many examples in the training set results in
overfitting (poor generalisation)

● Function produced may not correctly predict all the examples in the test set

● Repeat for different sizes of training set and randomly selected of each size to
obtain the average prediction quality of the learning algorithm as a function of
the size of the training set (learning curve)

Computational Learning Theory

● How do we know that h is close to the target function f, if we don't
know what f is?

● Assume that the training and test sets are drawn randomly from the
same population of examples – i.e., that the future is like the past

● Any hypothesis that is consistent with a sufficiently large set of
examples is unlikely to be wrong – probably approximately correct

● An hypothesis h is approximately correct if the probability that h is
different from f on an example is less than a (small) constant

● With enough examples there is a high probability that all consistent
hypotheses will be approximately correct

Approximately Correct Hypotheses

● The error of a hypothesis h with respect to the
true function f is the probability that h is
different from f on an example

error(h) = P(h(x) ≠ f(x) | x drawn from D)

where D is the distribution from which examples
are drawn

● A hypothesis is approximately correct if error(h)
≤ ε where ε is a small constant

How Many Examples are Needed?

● A hypothesis h has error at most ε with probability at least 1 –
σ, if it is consistent with at least N examples, where N is given
by

● σ is a small constant, and H is the set of possible hyptheses

● h is said to be probably approximately correct

● Inductive learning with no prior knowledge of the target function
is generally very hard – similar results for neural networks

Other Problems ...

● Systems developed using machine learning techniques
do not necessarily reason in the same way as people,
e.g.:
● a decision tree may ignore what (to a human) appears to be

“relevant” information
● inductive logic programming may invent entirely new concepts

which do not correspond to those used by humans when
reasoning about the problem

● May be hard for users/managers to trust output of the
system

● Similar problems to other AI techniques (e.g., expert
systems, belief networks etc.)

Example: Recommender Systems

● A recommender system is a system which suggests
products or services based on a user's previous choices
or choices of other, similar users

● Now widely used in online retailing: e.g., Amazon's “New/
Recommended for you”, “other users who bought this also
bought” etc.; iTunes “genius” feature etc.

● Other applications include search query prediction,
collaborative email processing etc.

● Often developed using machine learning techniques

Case Study: the 5lb ham ...

● Some years ago, Net Perceptions was installing its
recommender software at a major catalog retailer

● Recommender system was tuned to produce high quality
recommendations that were successful against historical
sales data

● Recommendations were produced in real time to call
centre staff while processing customer calls

● e.g., if the customer orders a pink dressing gown, the
system might suggest fuzzy pink slippers to go with it,
based on prior sales experience

Case Study: the 5lb ham ...

● The day arrives for the big test when the system is used
“live” for the first time

● The first call comes in: the customer orders a complete two
week diet package – all the powdered food you need to eat
to lose 10lb in two weeks

● When the order is entered into the system, top of the list of
recommendations is a 5lb tinned ham ...

● Developers and company representatives are stunned and
nearly cancel the test, but the call centre agent asks the
customer if they want a ham as part of the order

● What did the customer do?

Case Study: the 5lb ham ...

● Customer says “sure, that would be great!”
● Software developers get the contract with the

catalog retailer
● But no one understands why that particular

recommendation was produced …
● Users have to trust the system

Summary

● Learning is hard – at least as hard as other AI
problems

● Knowledge free learning works for simple
problems but fails in harder cases

● We can make learning more tractable by
incorporating knowledge, e.g., EBL and ILP

● However this requires both knowledge
representation and reasoning, and assumes that
we can do, e.g., the reasoning necessary to find
an explanation in EBL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

